Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398972

RESUMO

Laser-based additive manufacturing processes, particularly direct energy deposition (DED), have gained prominence for fabricating complex, functionally graded, or customized parts. DED employs a high-powered heat source to melt metallic powder or wire, enabling precise control of grain structures and the production of high-strength objects. However, common defects, such as a lack of fusion and pores between layers or beads, can compromise the mechanical properties of the printed components. This study focuses on investigating the recurrent causes of pore defects in the powder-fed DED process, with a specific emphasis on the influence of oxidized metal powders. This research explores the impact of intentionally oxidizing metal powders of hot work tool steel H13 by exposing them to regulated humidity and temperature conditions. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy results demonstrate the clumping of powders and the deposition of iron oxides in the oxidized powders at elevated temperatures (70 °C for 72 h). Multi-layered depositions of the oxidized H13 powders on STD61 substrate do not show significant differences in cross sections among specimens, suggesting that oxidation does not visibly form large pores. However, fine pores, detected through CT scanning, are observed in depositions of oxidized powders at higher temperatures. These fine pores, typically less than 250 µm in diameter, are irregularly distributed throughout the deposition, indicating a potential degradation in mechanical properties. The findings highlight the need for careful consideration of oxidation effects in optimizing process parameters for enhanced additive manufacturing quality.

2.
Fish Shellfish Immunol ; 141: 109066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689225

RESUMO

Viral hemorrhagic septicemia causes considerable economic losses for Korea's olive flounder (Paralichthys olivaceus) aquaculture farms; therefore, effective antiviral agents for controlling viral hemorrhagic septicemia virus (VHSV) infection are imperative. The present study implemented a Box-Behnken design and cytopathic reduction assay to derive an optimized extract of Sanguisorba officinalis L. roots (OE-SOR) with maximum antiviral activity against VHSV. OE-SOR prepared under optimized extraction conditions (55% ethanol concentration at 50 °C for 5 h) exhibited potent antiviral activity against VHSV, with a 50% effective 0.21 µg/mL concentration and a 340 selective index. OE-SOR also showed direct virucidal activity in the plaque reduction assay. Administering OE-SOR to olive flounder exhibited substantial efficacies against VHSV infection. Fish receiving 100 mg/kg body weight/day of OE-SOR as a preventive (40.0%; p < 0.05) or therapeutic (44.4%; p < 0.05) exhibited a higher relative survival than the untreated VHSV-infected control group (mortalities of 100% and 90%, respectively). In addition, fish fed with OE-SOR (100 mg/kg body weight/day) for two weeks conveyed a significantly higher inflammatory cytokine expression (nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], interleukin-1 beta [IL-1ß], and tumor necrosis factor-alpha [TNF-α]) than the control group one to two days post-administration. Moreover, no hematological or histological changes were observed in olive flounder treated with OE-SOR over four weeks. Liquid chromatography-quadrupole-time of flight tandem mass spectrometry and -triple quadrupole tandem mass spectrometry analyses identified ziyuglycoside I as a prominent OE-SOR constituent and marker compound (content: 14.5%). This study verifies that OE-SOR is an effective alternative for controlling viral hemorrhagic septicemia in olive flounder farms as it exhibits efficient in vivo anti-VHSV activity and increases innate immune responses.


Assuntos
Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Novirhabdovirus , Sanguisorba , Animais , Septicemia Hemorrágica Viral/prevenção & controle , Antivirais/farmacologia , Novirhabdovirus/fisiologia , Peso Corporal , Doenças dos Peixes/prevenção & controle
3.
J Cheminform ; 15(1): 71, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550756

RESUMO

The identification of molecular structure is essential for understanding chemical diversity and for developing drug leads from small molecules. Nevertheless, the structure elucidation of small molecules by Nuclear Magnetic Resonance (NMR) experiments is often a long and non-trivial process that relies on years of training. To achieve this process efficiently, several spectral databases have been established to retrieve reference NMR spectra. However, the number of reference NMR spectra available is limited and has mostly facilitated annotation of commercially available derivatives. Here, we introduce DeepSAT, a neural network-based structure annotation and scaffold prediction system that directly extracts the chemical features associated with molecular structures from their NMR spectra. Using only the 1H-13C HSQC spectrum, DeepSAT identifies related known compounds and thus efficiently assists in the identification of molecular structures. DeepSAT is expected to accelerate chemical and biomedical research by accelerating the identification of molecular structures.

4.
Micromachines (Basel) ; 14(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421105

RESUMO

High thermal conductivity steel (HTCS-150) is deposited onto non-heat-treated AISI H13 (N-H13) via powder-fed direct energy deposition (DED) based on the response surface methodology (RSM) to enhance the mechanical properties and thermal conductivity of N-H13, which is generally used as a hot-work tool steel. The main process parameters of the powder-fed DED are priorly optimized to minimize defects in the deposited regions and, therefore, to obtain homogeneous material properties. The deposited HTCS-150 is comprehensively evaluated through hardness, tensile, and wear tests at the different temperatures of 25, 200, 400, 600, and 800 °C. Compared to conventionally heat-treated (quenched and tempered) H13 (HT-H13), the hardness of the additively manufactured HTCS-150 slightly increases at 25 °C, whereas it does not show any significant difference above 200 °C. However, the HTCS-150 deposited on N-H13 shows a lower ultimate tensile strength and elongation than HT-H13 at all tested temperatures, and the deposition of the HTCS-150 on N-H13 enhances the ultimate tensile strength of N-H13. While the HTCS-150 does not show a significant difference in the wear rate below 400 °C compared to HT-H13, it shows a lower wear rate above 600 °C. The HTCS-150 reveals a higher thermal conductivity than the HT-H13 below 600 °C, whereas the behavior is reversed at 800 °C. The results suggest that the HTCS-150 additively manufactured via powder-fed direct energy deposition can enhance the mechanical and thermal properties of N-H13, including hardness, tensile strength, wear resistance, and thermal conductivity in a wide range of temperatures, often superior to those of HT-H13.

5.
Antioxidants (Basel) ; 12(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37371990

RESUMO

Cordycepin, also known as 3'-deoxyadenosine, is a major active ingredient of Cordyceps militaris with diverse pharmacological effects. Due to its limited supply, many attempts have been conducted to enhance the cordycepin content. As part of this study, eight medicinal plants were supplemented with cultivation substrates of Cordyceps to increase the cordycepin content. Cordyceps cultivated on brown rice supplemented with Mori Folium, Curcumae Rhizoma, Saururi Herba, and Angelicae Gigantis Radix exhibited increased cordycepin content compared to a brown rice control. Among them, the addition of 25% Mori Folium increased the cordycepin content up to 4 times. Adenosine deaminase (ADA) modulates the deamination of adenosine and deoxyadenosine, and the inhibitors have therapeutic potential with anti-proliferative and anti-inflammatory properties. As ADA is also known to be involved in converting cordycepin to 3'-deoxyinosine, the inhibitory activity of medicinal plants on ADA was measured by spectrophotometric analysis using cordycepin as a substrate. As expected, Mori Folium, Curcumae Rhizoma, Saururi Herba, and Angelicae Gigas Radix strongly inhibited ADA activity. Molecular docking analysis also showed the correlation between ADA and the major components of these medicinal plants. Conclusively, our research suggests a new strategy of using medicinal plants to enhance cordycepin production in C. militaris.

6.
J Microbiol Biotechnol ; 33(7): 941-948, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37164682

RESUMO

Metabolites from medicinal plants continue to hold significant value in the exploration and advancement of novel pharmaceuticals. In the search for plants containing compounds with anti-inflammatory effects, we observed that the ethanol (EtOH) extract obtained from the aerial components of Gouania leptostachya DC. var. tonkinensis Pit. exhibited substantial suppression of nitric oxide (NO) in vitro. In a phytochemical study on an EtOH extract of G. leptostachya, 11 compounds were purified, including one unreported compound namely gouanioside A (1). Their chemical structures were unambiguously determined through the use of various spectroscopic techniques, such as 1 and 2D NMR, IR, and HR-ESI-MS, and by producing derivatives via chemical reactions. The EtOH extract, fractions, and a new compound exerted inflammatory effects by altering NO synthesis in murine RAW264.7 macrophage cells stimulated with lipopolysaccharide. The underlying inflammatory mechanism of the new compound 1 was also explored through various in vitro experiments. The results of this study indicate the potential usefulness of new compound 1 from G. leptostachya as a treatment for inflammatory diseases.


Assuntos
Rhamnaceae , Saponinas , Triterpenos , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Saponinas/farmacologia , Saponinas/química , Células RAW 264.7 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Triterpenos/farmacologia , Espectroscopia de Ressonância Magnética , Óxido Nítrico/metabolismo , Lipopolissacarídeos
7.
J Microbiol Biotechnol ; 33(6): 797-805, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36908274

RESUMO

Species belonging to the Vernonia (Asteraceae), the largest genus in the tribe Vernonieae (consisting of about 1,000 species), are widely used in food and medicine. These plants are rich sources of bioactive sesquiterpene lactones and steroid saponins, likely including many as yet undiscovered chemical components. A phytochemical investigation resulted in the separation of three new stigmastane-type steroidal saponins (1 - 3), designated as vernogratiosides A-C, from whole plants of V. gratiosa. Their structures were elucidated based on infrared spectroscopy (IR), one-dimensional (1D) and two-dimensional nuclear magnetic resonance (2D NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and electronic circular dichroism analyses (ECD), as well as chemical reactivity. Molecular docking analysis of representative saponins with α-glucosidase inhibitory activity was performed. Additionally, the intended substances were tested for their ability to inhibit α-glucosidase activity in a laboratory setting. The results suggested that stigmastane-type steroidal saponins from V. gratiosa are promising candidate antidiabetic agents.


Assuntos
Saponinas , Vernonia , Vernonia/química , Saponinas/farmacologia , Saponinas/química , alfa-Glucosidases , Estrutura Molecular , Simulação de Acoplamento Molecular
8.
Antioxidants (Basel) ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830069

RESUMO

Cratoxylum formosum ssp. pruniflorum (Kurz.) Gogel (Guttiferae), called kuding tea, is widely distributed in Southeast Asia. In this study, the constituents and biological activity of C. formosum ssp. pruniflorum were investigated. Extract of its leaves, roots and stems showed antioxidant and α-glucosidase inhibitory activity. Interestingly, comparison of the metabolite profiles of leaves, roots and stems of C. formosum ssp. pruniflorum by LC-MS analysis showed a great difference between the roots and leaves, whereas the roots and stems were quite similar. Purification of the roots and leaves of C. formosum ssp. pruniflorum through various chromatographic techniques resulted in the isolation of 25 compounds. The structures of isolated compounds were elucidated on the basis of spectroscopic analysis as 18 xanthones, 5 flavonoids, a benzophenone and a phenolic compound. Among them, a xanthone (16) and a benzophenone (19) were first reported from nature. Evaluation of biological activity revealed that xanthones had a potent α-glucosidase inhibitory activity, while flavonoids were responsible for the antioxidant activity. To maximize the biological activity, yield and total phenolic content of C. formosum ssp. pruniflorum, extraction conditions such as extraction solvent, time and temperature were optimized using response surface methodology with Box-Behnken Design (BBD). Regression analysis showed a good fit of the experimental data, and the optimal condition was obtained as MeOH concentration in EtOAc, 88.1%; extraction time, 6.02 h; and extraction temperature 60.0 °C. α-Glucosidase inhibitory activity, yield and total phenolic content under the optimal condition were found to be 72.2% inhibition, 10.3% and 163.9 mg GAE/g extract, respectively. These results provide useful information about C. formosum ssp. pruniflorum as functional foods for oxidative stress-related metabolic diseases.

9.
Biochimie ; 204: 169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623908

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. The corresponding author, Dr Byoungduck Park, requested publication of a corrigendum to correct Fig. 2B which reused control data from a different publication (doi: 10.1016/j.intimp.2015.02.014). Upon further inspection, the Biochimie editorial team noticed that: Comparison of Fig. 2B with Fig. 4C of a previous publication in International Immunopharmacology by two co-authors (doi: 10.1016/j.intimp.2015.02.014) reveals that western blot ß-actin control data from the earlier paper were re-used in a different experiment shown in Fig. 2B of the article in Biochimie, after adjustment of the brightness/contrast. Furthermore, the same bands, after more image manipulation were presented as Smad3 data in Fig. 4C of the Biochimie article. Here the image manipulation involved notably the rotation of the set of bands by 180° and some adjustment of the height/width ratio. The authors apologise for any confusion that may have arisen from their article.

10.
Nat Prod Res ; 37(14): 2342-2350, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35184634

RESUMO

Phytochemical investigation of the whole plants of Vernonia gratiosa Hance. led in the isolation and identification of two new stigmastane-type steroidal glucosides (1-2), namely vernogratiosides A (1), and B (2). Their chemical structures were fully elucidated based on 1 D/2D NMR spectroscopic, HR-ESI-MS data analyses, and by producing derivatives by chemical reactions. The binding potential of the isolated compounds to replicase protein - main protease of SARS-CoV-2 were examined using the molecular docking simulations. Our results show that the isolated steroidal glucosides (1-2) bind to the substrate-binding site of SARS-CoV-2 main protease with binding affinities of -7.2 and -7.6 kcal/mol, respectively, as well as binding abilities equivalent to N3 inhibitor that has already been reported (-7.5 kcal/mol).


Assuntos
COVID-19 , Vernonia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glucosídeos/farmacologia , Vernonia/química , Esteroides/química
11.
J Pharm Biomed Anal ; 220: 114988, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35994944

RESUMO

The cell extraction method coupled with LC-QTOF-MS/MS is a biological screening technique in which cells are incubated with extracts of natural products, which results in potential bioactive compounds selectively combining with various extracellular and intracellular targets. Although the neuroprotective effects of the plant Polygonum tinctorium are unknown, the ethyl acetate (EtOAc) fraction exhibits significant neuroprotective effects against ʟ-glutamate-induced cytotoxicity in HT22 cells. In this study, we attempted to identify the neuroprotective compounds in the EtOAc fraction of P. tinctorium using the cell extraction method coupled with LC-QTOF MS/MS. Potential neuroprotective components derived from P. tinctorium were combined selectively with HT22 cells, and cell-derived metabolites were identified. A new flavonoid compound, 3,5,3',4'-tetrahydroxy-6,7-methylendioxyflavone-3-O-ß-ᴅ-glucopyranoside (1), and 14 known compounds (2-15), with compounds 2, 3, 8, 13, and 15 detected by the cell extraction method, were isolated from the EtOAc fraction of P. tinctorium. Compounds 2, 8, 12, and 14 showed strong neuroprotective effects, with compounds 2 and 14 identified in this plant for the first time in this study. Our results indicate that the cell extraction method coupled with LC-QTOF MS/MS is a useful tool for screening and identifying neuroprotective compounds in natural products.


Assuntos
Produtos Biológicos , Fármacos Neuroprotetores , Polygonum , Produtos Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/farmacologia , Ácido Glutâmico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos
12.
Carbohydr Res ; 519: 108613, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752103

RESUMO

In our previous research on Vietnamese medicinal plants, we found that the ethanolic extract of the aerial parts of Paris polyphylla var. chinensis exhibited cytotoxic effects in vitro in the MCF-7 human cancer cell line. Here, we used combined chromatographic separations to isolate six compounds including a new steroid glycoside, paripoloside A (3), and five known compounds, from the butanol extract of the aerial parts of P. polyphylla. We unambiguously elucidated their structures based on spectroscopic data (proton and carbon-13 nuclear magnetic resonance, heteronuclear single quantum coherence, heteronuclear multiple bond correlation, correlation spectroscopy, and high-resolution electrospray ionization mass spectroscopy data), and chemical reactions. Among the isolated compounds, paris saponin II (PSII) had the strongest cytotoxic effects against MCF-7 breast cancer cells. Interestingly, PSII significantly increased the expression of p53, p21, p27, and Bax protein levels and significantly suppressed the expression of cyclin D1 and retinoblastoma protein. These data suggest that PSII may induce G1/S phase cell cycle arrest and apoptosis pathway development in MCF-7 cells. Furthermore, the MCF-7 breast cancer cells mechanism of PSII was also investigated using molecular docking. Together, our results demonstrate that isolated compounds from P. polyphylla are promising candidates as breast cancer inhibitors.


Assuntos
Neoplasias da Mama , Diosgenina , Liliaceae , Saponinas , Pontos de Checagem do Ciclo Celular , Diosgenina/análogos & derivados , Diosgenina/análise , Feminino , Humanos , Liliaceae/química , Células MCF-7 , Simulação de Acoplamento Molecular , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Saponinas/química
13.
J Ginseng Res ; 46(2): 296-303, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509819

RESUMO

Background: Skin microbiota is important for maintenance of skin homeostasis; however, its disturbance may cause an increase in pathogenic microorganisms. Therefore, we aimed to develop a red ginseng formulation that can selectively promote beneficial bacteria. Methods: The effects of red ginseng formulation on microorganism growth were analyzed by comparing the growth rates of Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes. Various preservatives mixed with red ginseng formulation were evaluated to determine the ideal composition for selective growth promotion of S. epidermidis. Red ginseng formulation with selected preservative was loaded into a biocompatible polymer mixture and applied to the faces of 20 female subjects in the clinical trial to observe changes in the skin microbiome. Results: Red ginseng formulation promoted the growth of S. aureus and S. epidermidis compared to fructooligosaccharide. When 1,2-hexanediol was applied with red ginseng formulation, only S. epidermidis showed selective growth. The analysis of the release rates of ginsenoside-Rg1 and -Re revealed that the exact content of Pluronic F-127 was around 11%. The application of hydrogel resulted in a decrease in C. acnes in all subjects. In subjects with low levels of S. epidermidis, the distribution of S. epidermidis was significantly increased with the application of hydrogel formulation and total microbial species of subjects decreased by 50% during the clinical trial. Conclusion: We confirmed that red ginseng formulation with 1,2-hexanediol can help maintain skin homeostasis through improvement of skin microbiome.

14.
Oncol Lett ; 23(3): 94, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35154425

RESUMO

Breast cancer is one of the most common malignant tumors in women worldwide, and is a major cause of mortality and morbidity in cancer patients. Constitutive activation of STAT3 has been found in a variety of malignant tumors, including breast cancer. Since STAT3 activation is capable of regulating various important features of tumor cells, identification of a novel STAT3 inhibitor is considered a potential strategy for treating breast cancer. The aim of the present study was to examine whether minecoside (MIN), an active compound extracted from Veronica peregrina L., exerts an antitumor effect by inhibiting STAT3 signaling pathway in MDA-MB-231 cells. The results revealed that MIN inhibited the constitutive STAT3 activation in a dose- and time-dependent manner. MIN also blocked the nuclear translocation of STAT3 and suppressed STAT3-DNA binding. In addition, MIN downregulated the STAT3-mediated expression of proteins such as Bcl-xL, Bcl-2, CXCR4, VEGF, and cyclin D1. Subsequently, MIN promoted the caspase-dependent apoptosis in MDA-MB-231 cells. Overall, results of the present study provide evidence that MIN exerted anticancer activity via inhibition of the STAT3 signaling pathway. Further studies using animal models are required to determine the potential of this molecule as an anticancer drug.

15.
Antibiotics (Basel) ; 11(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203876

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic gram-negative pathogen that can cause various infections, particularly in patients with compromised host defenses. P. aeruginosa forms biofilms and produces virulence factors through quorum sensing (QS) network, resulting in resistance to antibiotics. RhlI/RhlR, one of key QS systems in P. aeruginosa, is considered an attractive target for inhibiting biofilm formation and attenuating virulence factors. Several recent studies examined small molecules targeting the RhlI/RhlR system and their in vitro and in vivo biological activities. In this review, RhlR-targeted modulators, including agonists and antagonists, are discussed with particular focus on structure-activity relationship studies and outlook for next-generation anti-biofilm agents.

16.
Phytochemistry ; 194: 113016, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34794092

RESUMO

The composition of a plant, together with its efficacy, vary depending on its maturity and plant parts. In this study, the chemical constituents of immature fruits of Maclura tricuspidata (Moraceae) were investigated together with their anti-diabetic and antioxidant effects. A total of 34 compounds were isolated from the immature fruits of M. tricuspidata using various chromatographic methods. Structure elucidation using extensive spectroscopic analysis led to the characterization of isolated compounds as isoflavonoids with prenyl substituents. Among them, macluraisoflavones A-O were first isolated from nature. The anti-diabetic and antioxidant activity of the isolated compounds were also suggested by α-glucosidase inhibitory activity and DPPH radical scavenging activity, respectively. In particular, macluraisoflavone I, an isoflavonoid with 2,2-dimethylpyran and 2-hydroperoxy-3-methylbut-3-enyl moieties, showed potent α-glucosidase inhibitory activity and DPPH radical scavenging activity. Further molecular docking analysis suggested hydrogen bond and alkyl interactions between α-glucosidase and macluraisoflavone I. Therefore, the immature fruits of M. tricuspidata can be used as an important natural product with antioxidant and anti-diabetic properties.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Maclura , Antioxidantes/isolamento & purificação , Flavonoides/isolamento & purificação , Frutas/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Maclura/química , Simulação de Acoplamento Molecular , alfa-Glucosidases
17.
Antioxidants (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34942998

RESUMO

As the leaf of Actinidia arguta has shown antioxidant activity, a study was conducted to identify the active ingredients. Forty-eight compounds were isolated from the leaves of A. arguta through various chromatographic techniques. Further characterization of the structures on the basis of 1D and 2D NMR and MS data identified several aromatic compounds, including phenylpropanoid derivatives, phenolics, coumarins, flavonoids and lignans. Among them, five compounds were newly reported, naturally occurring, and named argutosides A-D (1-4), which consist of phenylpropanoid glycosides that are conjugated with a phenolic moiety, and argutoside E (5), which is a coumarin glycoside that is conjugated with a phenylpropanoid unit. The isolated compounds showed good antioxidant and α-glucosidase inhibitory activity with differences in activity depending on the structures. Molecular docking analysis demonstrated the interaction between the hydroxyl and carbonyl groups of compounds 1 and 5 with α-glucosidase. Taken together, the leaves of A. arguta are rich in aromatic compounds with diverse structures. Therefore, the leaves of A. arguta and their aromatic components might be beneficial for oxidative stress and glucose-related diseases.

18.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946533

RESUMO

Streptococcus zoonotic bacteria cause serious problems in aquaculture with clinical effects on humans. A structure-antibacterial activity relationships analysis of 22 isoflavones isolated from M. tricuspidata (leaves, ripe fruits, and unripe fruits) against S. iniae revealed that prenylation of the isoflavone skeleton was an important key for their antibacterial activities (minimum inhibitory concentrations: 1.95-500 µg/mL). Through principal component analysis, characteristic prenylated isoflavones such as 6,8-diprenlygenistein (4) were identified as pivotal compounds that largely determine each part's antibacterial activities. M. tiricuspidata ripe fruits (MTF), which showed the highest antibacterial activity among the parts tested, were optimized for high antibacterial activity and low cytotoxicity on fathead minnow cells using Box-Behnken design. Optimized extraction conditions were deduced to be 50%/80 °C/7.5 h for ethanol concentration/extraction temperature/time, and OE-MTF showed contents of 6,8-diprenlygenistein (4), 2.09% with a MIC of 40 µg/mL. These results suggest that OE-MTF and its active isoflavones have promising potential as eco-friendly antibacterial agents against streptococcosis in aquaculture.


Assuntos
Antibacterianos , Cyprinidae/microbiologia , Doenças dos Peixes , Frutas/química , Isoflavonas , Maclura/química , Extratos Vegetais/química , Streptococcus iniae/crescimento & desenvolvimento , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Isoflavonas/química , Isoflavonas/isolamento & purificação , Isoflavonas/farmacologia , Prenilação
19.
Molecules ; 26(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834150

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aß) peptides. Aß induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aß-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3',4',5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aß-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aß-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aß25-35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aß25-35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aß25-35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Luteolina , Microglia/metabolismo , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Luteolina/química , Luteolina/farmacologia , Camundongos , Microglia/patologia
20.
Pharmaceutics ; 13(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34575592

RESUMO

Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a flavonoid analog from Scutellaria baicalensis, possesses several pharmacological activities including antioxidant, antiproliferative, and anti-inflammatory activities. We previously reported that baicalein inhibits the thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) signaling pathways and can be used as an active ingredient in the treatment of asthma and atopic dermatitis. However, baicalein is rapidly metabolized to baicalin and baicalein-6-O-glucuronide in vivo, which limits its preclinical and clinical use. In this study, we designed, synthesized, and evaluated baicalein prodrugs that protect the OH group at the 7-position of the A ring in baicalein with the amino acid carbamate functional group. Comprehensive in vitro and in vivo studies identified compound 2 as a baicalein prodrug candidate that improved the plasma exposure of baicalein in mouse animal studies. Our results demonstrated that this prodrug approach could be further adopted to discover oral baicalein prodrugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...